Score: _____

LA2 – Assembly Language Programs
Activities

COMP256 – Computing Abstractions
Dickinson College
Spring 2023
Prof. Grant Braught

Name:

Today’s class revisited the idea of program translation through the use of a compiler and an assembler. We also saw the machine simulator that we will be using to learn about assembly language programming. A first example of an assembly language program was presented and its execution was described at the assembly language machine level of abstraction (i.e. we did not discuss the underlying translation to machine language for execution. We will spend some time on that a bit later.)

Today’s activities will guide you through the process of creating, assembling and running assembly language programs on the machine simulator. You will become familiar with the simulator’s features and explore a few assembly language instructions that correspond to operations that the K&S computer did not support. Finally, you’ll write, assemble and run an assembly language program or two.

Assembly Instruction Reference:

For reference the table below summarizes all of the assembly language instructions that we know about so far:

[image:]

Note that in the “Instruction Format” column an R indicates that a register must appear in that position, an L indicates that a label must appear in that location and # indicates that an immediate value (e.g. #231) must appear in that location.

Assembly Language Instructions:

When writing assembly language instructions, you must use only the specific formats that are allowed by the particular assembly language you are using. Some of the allowed formats for our assembly language are shown in the “Instruction Format” column in the table above. The “Example” column then gives an example of that format using specific registers, values and/or labels. Attempting to use a format that is not allowed will result in a program that will not assemble.

🔑 1. Consider each of the assembly instructions in the table below. For each instruction, indicate that it is valid if it matches one of the formats in the table above or invalid if it does not.

	
	
	
	

	
	Instruction
	Valid or Invalid?
	

	
	LOAD R3 X
	
	

	
	STORE Y R2
	
	

	
	OR R1 R2 R7
	
	

	
	STORE Y #15
	
	

	
	ADD R2 R1 #13
	
	

	
	ADD R3 #9 R5
	
	

	
	SUB R3 A B
	
	

	
	ADD R2 R3 28
	
	

	
	NOT R9 R10
	
	

	
	
	
	

🔑 2. Consider each of the assembly instructions in the table below. For each instruction, indicate its addressing mode as Register to Register, Direct or Immediate.

	
	
	
	

	
	Instruction
	Addressing Mode
	

	
	LOAD R3 X
	
	

	
	AND R7 R5 R3
	
	

	
	SUB R2 R9 #3
	
	

	
	LOAD R7 #12
	
	

	
	STORE R8 B
	
	

	
	NOT R9 R10
	
	

	
	
	
	

Getting Setup for Assembly Language Programming:

To write, assemble and run assembly language programs we will be using the Docker container that you created at the end of the LA1 homework.

3. Follow the instructions at the end of LA1 to be sure that you have Docker Desktop running, the Comp256Assembly container started and that you are connected to it with Tiger VNC. You should see the desktop in the image below when everything is working:

[image: A screenshot of a computer

Description automatically generated]

4. Open the Mousepad text editor by clicking on its icon in the “Launcher” at the bottom of the Desktop. Enter the following assembly language program into Mousepad and save it as
LA2-1.asm. Note that when we create files containing assembly language we will name them with a .asm extension. Using this extension help us know what is in the file. It is sort of like naming text files with the .txt extension or Java source code files with the .java extension.

		ONCE:	.word 15
		TWICE:	.word 0

					LOAD R0 ONCE
					ADD R1 R0 R0
					STORE R1 TWICE
					HALT

Give a screen shot of your program in the Mousepad editor as your answer for this question.

5. The command to assemble a program is:
	
		assembler <asm file> <ml file>

where <asm file> is the name of the assembly language source code file that is to be converted to machine language and <ml file> is the name of the machine language file to be generated. Like we use .asm as the extension on files containing assembly language, we will use .ml as the extension on our machine language files.

Assemble the program in your LA2-1.asm file into the file LA2-1.ml. Give a screenshot of the command you used and its output here.

6. Open your program in the machine and run it. Give a screenshot showing the machine simulator window after the program was run as your answer.

Experimenting with some New Instructions:

The operations performed by many of the assembly language instructions for our machine simulator will seem very similar to the machine language instructions supported by the K&S computer. For example, adding two registers or moving a value from memory to a register. However, this machine simulator has a more capable ALU that can perform some operations that we have not seen before. The following sections will explore some of these instructions.

Immediate Addressing Mode Instructions:

One set of instructions that that is new to us are the Immediate Addressing Mode instructions. The Immediate Addressing Mode instructions are used when you need literal values in your programs. For example, if you want to put the specific value 108 into a register or add the value 51 to a register or subtract 13 from a register. The Immediate Addressing Mode instructions are what you need to perform each of those operations. These Immediate Addressing Mode Instructions appear in the table above and are indicated both by the use of the # character and by a comment indicating that they are Immediate Mode.

🔑 7. Give an Immediate Addressing Mode instruction that will perform each of the following tasks. The instruction you give should use the specific registers and values indicated. Your instruction will look similar to what is shown in the “Example” column of the instruction reference. You can put your instructions into a program, assemble and run it if you would like to check your work.

	
	
	
	

	
	Task
	Assembly Instruction
	

	
	Put the value 100 into register 2.

	
	

	
	Add 17 to the value in register 5 and put the result into register 9.
	
	

	
	Set the value in register 3 to 22 less than its current value.
	
	

	
	Increment (add 1 to) the value in register 7.
	
	

	
	
	
	

8. Consider the following program that uses Immediate Addressing Mode instructions:

	LOAD R0 #100
	ADD R1 R0 #50
	SUB R2 R1 #75
	HALT

Complete the table below to show the base 10 values that will be contained in the indicated registers after this program is executed. You can put these instructions into a program, assemble and run it if you would like to check your work.

	
	
	
	

	
	Register
	Value
	

	
	R0
	
	

	
	R1
	
	

	
	R2
	
	

	
	
	
	

Some New (to us) Operations:

Three of the instructions that exist in our assembly language did not exist in the Knob & Switch computer are: NOT, SHL and SHR. The questions in this section have you explore what those instructions do. You should enter the small programs into your text editor, assemble and run them in order to answer the questions.

9. The following program loads the value 92 into R0 and then uses the NOT instruction on it, placing the result in R1.

	LOAD R0 #92
	NOT R1 R0
	HALT

a. Assemble and run this small program. Give the 32-bit binary values that appear in registers R0 and R1 after you run the program. Hint: You can use the dropdowns beside the registers in the machine simulator to switch between binary and base 10 representation.

	
	
	
	

	
	Register
	32 bit Binary Value
	

	
	R0
	
	

	
	R1
	
	

	
	
	
	

b. What does the NOT instruction do? Hint: Compare the binary representation of the values in R0 and R1 from part a.

🏆 10. What effect would the following program have on a signed (two’s complement) base 10 value in R0? If you are unsure you can assemble and run the program, observe the result and then try to understand why this program does what it does.

LOAD R0 #92
	NOT R0 R0
	ADD R0 R0 #1
	HALT

11. Question #9 used a small program including the NOT statement to help you understand what it does. Experiment with the SHL and SHR instructions by writing, assembling and running small programs, like the one in question #9, to learn about these instructions.

a. What does the SHL command do to the bits of the value it is operating on? Hint: Look at the binary values in the registers that you used.

b. What effect does SHL have on the base 10 value it is operating on?

c. What does the SHR command do to the bits of the value it is operating on?

🏆 d. What effect does SHR have on the base 10 value it is operating on? For a complete answer you’ll need to try it out on both even and odd base 10 values (i.e. a 0 in the LSbit (an even number) or a 1 in the LSbit (an odd number)).

Input and Output:

Recall that input and output for our machine is accomplished using Memory Mapped Input/Output. This means that special memory addresses are set aside for performing input and output operations with devices. Reading (i.e. LOADing) from these addresses reads input from the device, and writing (i.e. STOREing) to these addresses writes output to the device.

Our assembler pre-defines two labels for us to use for input and output:
· STDIN – The standard input device. LOADing a value from STDIN will read input from the user.
· STDOUT – The standard output device. STOREing a value to STDOUT will display output for the user.

The following short video illustrates how to use the STDIN and STDOUT labels in your assembly language programs to perform input and output using our machine:
· Using Standard Input and Standard Output:
· https://web.microsoftstream.com/video/6887c47a-f866-41ff-89d6-c35753b02885 (2:45)
· Note: The commands used to run the assembler and machine in this video are slightly different than what we have been using. You should continue to use the assembler and machine commands we have learned.

🔑 12. Write and test a small assembly language program that reads two values from STDIN and displays their difference (subtract the second from the first) on STDOUT. Be sure to assemble and run your program in the machine simulator to be sure that it works.

Give the assembly language program that you wrote as your answer.

Assembly Programming:

🔑 13. Translate the following HLL program into assembly language:

	READ NUM1
	READ NUM2
	RESULT = (NUM1-10)+(20-NUM2)+5

Save your program in a text file, assemble it and run it in the machine simulator with different values for NUM1 and NUM2 to ensure that it works correctly.

Give your assembly language program as your answer to this question.

🏆 14. Optional Extra Challenge: Translate the High-Level Language program shown below into assembly language. Be sure to assemble and run your program in the machine simulator to check that it works.

	Read X
	Read Y
	Read Z
	
	Q = ((X + (Z – 5)) * 2) + (4 * (25 - Y))

	Print Q

Give the assembly language program that you wrote as your answer.

Optional: To help me improve and scope these activities for future semesters please consider providing the following feedback.

a. Approximately how much time did you spend on this activity outside of class time?

b. Please comment on any particular challenges you faced in completing this activity.

[image: Creative Commons License] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

image1.emf
Instruction

Format Eample Meaning Comment
ADD R R R ADD R1 R2 R3 Rl «— R2 + R3
ADD R R # ADD R1 R2 #231 R1 «— R2 + 231 Immediate Mode
SUB R RR SUB R1 R2 R3 Rl «— R2 - R3
SUB R R SUB R1 R2 #1 Rl « R2 -1 Immediate Mode
AND R R R AND R1 R2 R3 Rl «— R2 & R3 Bitwise AND
AND R R # AND R1 R2 #0xFOOF |Rl «— R2 & OxXFOOF [Immediate Mode
OR R R R OR R1 R2 R3 Rl «— R2 | R3 Bitwise OR
OR R R # OR R1 R2 #Dbl1001 Rl «— R2 | b1001 Immediate Mode
NOT R R NOT R1 R2 Rl «— ~R2 Bitwise NOT
SHL R R SHL R1 R2 Rl «— R2 << 1 LSb = 0
SHR R R SHR R1 R2 Rl «— R2 >>> 1 MSb = 0
MOV R R MOV R1 R2 Rl «— R2 Copy
LOAD R L LOAD R1 X Rl «— MM[X] Direct Mode
LOAD R # LOAD R1 #27 R1 « 27 Immediate Mode
STORE R L STORE R1 X MM[X] « RI1 Direct Mode

Instruction

Format

Eample Meaning Comment

ADD R R R

ADD R1 R2 R3 R1

←

 R2 + R3

ADD R R #

ADD R1 R2 #231 R1

←

 R2 + 231 Immediate Mode

SUB R R R

SUB R1 R2 R3 R1

←

 R2 - R3

SUB R R #

SUB R1 R2 #1 R1

←

 R2 - 1 Immediate Mode

AND R R R

AND R1 R2 R3 R1

←

 R2 & R3 Bitwise AND

AND R R #

AND R1 R2 #0xF00F R1

←

 R2 & 0xF00F Immediate Mode

OR R R R

OR R1 R2 R3 R1

←

 R2 | R3 Bitwise OR

OR R R #

OR R1 R2 #b1001 R1

←

 R2 | b1001 Immediate Mode

NOT R R

NOT R1 R2 R1

←

 ~R2 Bitwise NOT

SHL R R

SHL R1 R2 R1

←

 R2 << 1 LSb = 0

SHR R R

SHR R1 R2 R1

←

 R2 >>> 1 MSb = 0

MOV R R

MOV R1 R2 R1

←

 R2 Copy

LOAD R L

LOAD R1 X R1

←

 MM[X] Direct Mode

LOAD R #

LOAD R1 #27 R1

←

 27 Immediate Mode

STORE R L

STORE R1 X MM[X]

←

 R1 Direct Mode

image2.png
268e786a7928:1 (student) - TigerVNC

¥ Applications L Y Tue 21 Feb, 11:46 student

image3.png

