Score: _____

LA3 – Branching and Looping
Activities

COMP256 – Computing Abstractions
Dickinson College
Spring 2023
Prof. Grant Braught

Name:

Today’s class addressed the need to include branching instructions in the instruction set for our machine language machine. We saw several examples showing that these allow us to implement high-level language control structures such as if and for. In fact, the branching instructions that we have are sufficient to implement all of the standard HLL control structures that we are used to using if, if/else, while, for, do, switch/case and compound logical conditions with logical AND (&&) and OR (||) operations in them. Today’s activities will give you some hands-on practice with these branching instructions and with implementing HLL control structures in assembly language.

A reference is included here for all of the assembly language instructions we know so far.

[image:]

[image:]

The Branching Instructions:

While we saw examples of some of the branching instructions in action, we certainly did not cover them all in detail. Use the reference table on the previous page to answer the following questions.

🔑 1. Give the “Instruction Format” of the instruction that you would use to implement each of the following conditions.

	
	
	
	

	
	Condition
	Instruction Format
	

	
	a.	X < 7
	
	

	
	b.	Y >= Z
	
	

	
	c.	5 > Y
	
	

	
	d.	Q > 0
	
	

	
	e.	N != M
	
	

	
	
	
	

🔑 2. Give a complete assembly language instruction including specific registers (i.e. like those in the “Example” column in the tables above) that will branch to the label TARGET if the specified condition is true:

	
	
	
	

	
	Operation
	Instruction
	

	
	a.	R1 is odd
	
	

	
	b.	R0 < R1
	
	

	
	c.	R7 == R8
	
	

	
	d.	R9 is nonzero
	
	

	
	e.	R12 >= R3
	
	

	
	
	
	

A Branching Program:

🔑 3. One of the examples from class showed how to express a high-level language program for computing the absolute value of a number in assembly language. Give a modified version of that program that computes the negative of the absolute value (-|x|). That is, the result is always a negative value. The high-level language code for this would be:

	int x
	Read x
if (x > 0) {
 x = -x;
}
Print x

Be sure to assemble your program to ensure that it is syntactically correct. Also be sure to run your program on the machine simulator to and check that it works correctly with both positive and negative inputs. Give your assembly language program as you answer.

The if / else Statement:

In the class we saw the generalized structures for translating if statements into assembly language. There are similar structures for converting all of the high-level language constructs that we know. One generalized structure for an if/else statement is

[image: Creative Commons License] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

	if (condition) {

		… if body …
		
	}
	else {
		… else body …
	}
	… program continues…

			Branch to IFBODY if condition is true
			JUMP ELSE

IFBODY:	… if body …

			JUMP END

ELSE:		… else body …

END:		… program continues…

🔑 4. The high-level language program reads in two numbers and prints out the larger value.

		int a;
		int b;

		Read a;
		Read b;

if (a > b) {
 Print a;
}
else {
	Print b;
}

Use the generalized if/else structure to translate this high-level language program into assembly language. Be sure to assemble your program to ensure that it is syntactically correct. Also be sure to run your program on the machine simulator to ensure that it works correctly. Give your assembly language program as your answer.

The while Loop:

Like the if, if/else and for loops we can specify a generalized structure for a while loop also. One generalized structure for a while loop is:

	while (condition) {

		… while body …
		
	}
	
	… program continues…

			JUMP to COND

TOP:		… while body …

COND:		JUMP to TOP if condition is TRUE

			… program continues…

Notice that like the for loop example from class, we place the test for the loop condition at the end of the while loop.

🔑 5. The high-level language program below reads in a value n and then uses a while loop to compute and display the value of n*7.

		int n;
		int total;

		Read n;
	
		total = 0;
while (n > 0) {
 total = total + 7
 n = n - 1
}
Print total

Use the generalized while structure to translate this high-level language program into assembly language. Be sure to assemble your program to ensure that it is syntactically correct. Also be sure to run your program on the machine simulator to ensure that it works correctly. Give your assembly language program as your answer.

Compound Logic Conditions:

Thus far all of the conditions we have looked at in our if and while loops have been simple conditions (e.g. x > 0, y <= z). But we know that it is also possible to have compound logical conditions using the logical AND (&&) and logical OR (||) operators. For example:

	if (x >= 0 || x < 10) {…}

	while (y > 7 && z <= 5) {…}

The questions in this section explore how to implement these types of compound conditions in assembly language.

6. The following assembly language program is intended to read a value from standard input and print a 1 if the value is less than 10 OR greater than 20, otherwise the program prints a 0. For example, if the input is 5 the program should print 1, if the input is 15 then it should print 0, and if the input is 25, it should print 1.

			LOAD R0 STDIN
			LOAD R1 #10
			LOAD R2 #20

			* Add branches here.

YES:		LOAD R3 #1
			JUMP PRINT

NO: 		LOAD R3 #0

PRINT:	STORE R3 STDOUT
			HALT

Give the branching instructions that when inserted at the indicated location make this program function as desired. Be sure to assemble and run your program in the machine simulator to check that it works correctly.

🏆 7. The following program is intended to do the following:
· Read a value from standard input.
· If that value is between 50 and 75 (inclusive) then output 1
· Otherwise output 0.

			LOAD R5 STDIN
			LOAD R6 #50
			LOAD R7 #75
	
			* Add branches here.

YES:		LOAD R8 #1
			JUMP PRINT

NO: 		LOAD R8 #0

PRINT:	STORE R8 STDOUT
			HALT

Give the branching instructions that when inserted at the indicated location make this program function as desired. Be sure to assemble and run your program in the machine simulator to check that it works correctly.
· Hint: You can use one of DeMorgan’s Identities here and then use the same approach you used in #6!

Optional Assembly Language Challenge:

🏆 🏆 8. Write an assembly language program that reads a specified number of positive integer inputs from standard input and outputs the largest value that was read. For example, if standard input contains:

	5 3 2 7 9 4

The 5 indicates that there will be 5 additional values. Then program should read those 5 additional values and print the largest of them (e.g 9 in this case). One strategy here would be to outline the program in high-level language code and then translate it into assembly code. Be sure to assemble, run and test your program to ensure that it is syntactically correct and that it works correctly. The program should work for any valid input not just the one shown above.

Optional: To help me improve and scope these activities for future semesters please consider providing the following feedback.

a. Approximately how much time did you spend on this activity outside of class time?

b. Please comment on any particular challenges you faced in completing this activity.

image1.emf
Instruction

Format Eample Meaning Comment
ADD R R R ADD R1 R2 R3 Rl «— R2 + R3
ADD R R # ADD R1 R2 #231 Rl «— R2 + 231 Immediate Mode
SUB R RR SUB R1 R2 R3 Rl «— R2 - R3
SUB R R # SUB R1 R2 #1 Rl « R2 -1 Immediate Mode
AND R R R AND R1 R2 R3 Rl «— R2 & R3 Bitwise AND
AND R R # AND R1 R2 #O0xFOOF Rl «— R2 & OxFQOOF Immediate Mode
OR R R R OR R1 R2 R3 Rl «— R2 | R3 Bitwise OR
OR R R # OR R1 R2 #b1001 Rl «— R2 | bl001 Immediate Mode
NOT R R NOT R1 R2 Rl «— ~R2 Bitwise NOT
SHL R R SHL R1 R2 Rl «— R2 << 1 LSb = 0
SHR R R SHR R1 R2 Rl «— R2 >>> 1 MSb = 0
MOV R R MOV R1 R2 Rl « R2 Copy
LOAD R L LOAD R1 X Rl «— MM[X] Direct Mode
LOAD R # LOAD R1 #27 Rl «— 27 Immediate Mode
STORE R L STORE R1 X MM[X] « RI1 Direct Mode

Instruction

Format

Eample Meaning Comment

ADD R R R

ADD R1 R2 R3 R1

←

 R2 + R3

ADD R R #

ADD R1 R2 #231 R1

←

 R2 + 231 Immediate Mode

SUB R R R

SUB R1 R2 R3 R1

←

 R2 - R3

SUB R R #

SUB R1 R2 #1 R1

←

 R2 - 1 Immediate Mode

AND R R R

AND R1 R2 R3 R1

←

 R2 & R3 Bitwise AND

AND R R #

AND R1 R2 #0xF00F R1

←

 R2 & 0xF00F Immediate Mode

OR R R R

OR R1 R2 R3 R1

←

 R2 | R3 Bitwise OR

OR R R #

OR R1 R2 #b1001 R1

←

 R2 | b1001 Immediate Mode

NOT R R

NOT R1 R2 R1

←

 ~R2 Bitwise NOT

SHL R R

SHL R1 R2 R1

←

 R2 << 1 LSb = 0

SHR R R

SHR R1 R2 R1

←

 R2 >>> 1 MSb = 0

MOV R R

MOV R1 R2 R1

←

 R2 Copy

LOAD R L

LOAD R1 X R1

←

 MM[X] Direct Mode

LOAD R #

LOAD R1 #27 R1

←

 27 Immediate Mode

STORE R L

STORE R1 X MM[X]

←

 R1 Direct Mode

image2.emf
Instruction

Format Eample Meaning Comment
JUMP L JUMP JLOC PC = JLOC
BNEG R L BNEG R1 BLOC IF R1 < 0 THEN PC = BLOC
BPOS R L BPOS R1 BLOC IF R1 > 0 THEN PC = BLOC
BZERO R L BZERO R1 BLOC IF R1 == 0 THEN PC = BLOC
BNZERO R L |BNZERO R1 BLOC IF R1 != 0 THEN PC = BLOC
BODD R L BODD R1 BLOC IF R1 ¢ 2 != 0 THEN PC = BLOC
BEVEN R L BEVEN R1 BLOC IF R1 & 2 == 0 THEN PC = BLOC
BEQ RR L BEQ R1 R2 BLOC IF R1 == R2 THEN PC = BLOC
BNEQ R R L. |BNEQ R1 R2 BLOC IF R1 != R2 THEN PC = BLOC
BGT RR L BGT R1 R2 BLOC IF R1 > R2 THEN PC = BLOC
BGEQ R R L. |BGEQ R1 R2 BLOC IF R1 >= R2 THEN PC = BLOC
BLEQ R R L. |BLEQ R1 R2 BLOC IF Rl <= R2 THEN PC = BLOC
BLT RR L BLT R1 R2 BLOC IF R1 < R2 THEN PC = BLOC

Instruction

Format

Eample Meaning Comment

JUMP L

JUMP JLOC PC = JLOC

BNEG R L

BNEG R1 BLOC IF R1 < 0 THEN PC = BLOC

BPOS R L

BPOS R1 BLOC IF R1 > 0 THEN PC = BLOC

BZERO R L

BZERO R1 BLOC IF R1 == 0 THEN PC = BLOC

BNZERO R L

BNZERO R1 BLOC IF R1 != 0 THEN PC = BLOC

BODD R L

BODD R1 BLOC IF R1 % 2 != 0 THEN PC = BLOC

BEVEN R L

BEVEN R1 BLOC IF R1 % 2 == 0 THEN PC = BLOC

BEQ R R L

BEQ R1 R2 BLOC IF R1 == R2 THEN PC = BLOC

BNEQ R R L

BNEQ R1 R2 BLOC IF R1 != R2 THEN PC = BLOC

BGT R R L

BGT R1 R2 BLOC IF R1 > R2 THEN PC = BLOC

BGEQ R R L

BGEQ R1 R2 BLOC IF R1 >= R2 THEN PC = BLOC

BLEQ R R L

BLEQ R1 R2 BLOC IF R1 <= R2 THEN PC = BLOC

BLT R R L

BLT R1 R2 BLOC IF R1 < R2 THEN PC = BLOC

image3.png

